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Abstract 

A study of the non-parametric survival model (Kaplan-Meier) and the semi-parametric Cox 

Regression model. From the practical side, it was found that the effect of the change of age by 

(3.483) when the patient's age was transferred from one age group to another on the estimation 

of the survival function by semi-parametric method using the (Cox Regression) model. From 

the comparison between the models of survival (nonparametric, semi-parametric) from the 

mean squares of relative error (RMSE) statistics, it was found that the best model for estimating 

the survival function is the nonparametric model (Kaplan-Meier). The study came out with 

several results, the most important of which is that by   estimating the survival function by the 

nonparametric method (Kaplan-Meier), it is possible to obtain the lowest cumulative risk rate 

for each survival time. This means that the probability of the patient staying in the time period 

(t) increases and that the risk rate is affected by the change in the patient's age and duration of 

stay when estimating the survival and cumulative risks by the semi-parametric method (Cox 

Regerssion). 
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Introduction 

Due to the lack of studies in the survival analysis for emerging corona disease (Covid 19), the 

study of survival analysis for patients infected with Coronavirus at Al-Kindi Teaching Hospital 

was chosen because the disease led to the end of life for many people.  

Research Aims 

1. Study and analysis of survival rates for people infected with the Coronavirus hospitalized in 

Al-Kindi Teaching Hospital and the most important factors that affect survival time. 

2. Comparison of survival models estimated by non-parametric and semi-parametric estimation 

methods by calculating mean relative error (RMSE). 
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3. Evaluation of the most important explanatory variables identified in the semi-parametric 

model affect survival time. 

 

The Probability density function 

It is a function used to represent the probability distribution of any random variable. The 

survival time T is like any continuous random variable that has a domain of positive values 

only and has a probability density function defined as a single probability target that may fail 

during the period from (t) to (t + ∆t) according to the formula (1): 

f(t) = Pr(T = t) = lim
∆t→0

 
1

∆t
Pr(t ≤ T ≤ t + ∆t)                       (1) 

where ∆t is very little but sufficient time for the event to occur . 

 

The Survival function 

The survival function of the random variable survival time (T) represents the probability that 

the survival time for an item is greater than or equal to the observed survival time (t). The 

probability of the event we are interested in will occur at a time greater than or equal to the 

observed survival time t, and it is denoted by the symbol S(t) .   It is expressed  by the formula 

(2): 

S(t) = P(an individual fails at or after t) 

S(t) = P(T ≥ t)                        (2) 

 

Hazard function h(t) 

The risk function represents the probability of death of the patient under study during the period 

((t+∆t,t), given that the patient was alive during time t. Therefore, the risk function represented 

the instantaneous failure rate of the individual live to the observed survival time t and 

symbolized by the symbol h(t).  Its formula (4): 

h(t) = lim
∆t→0

 
P((t ≤ T < t + ∆t)|T ≥ t)

∆t
                            (3) 

h(t) =
f(t)

S(t)
                            (4) 

One of the properties of the risk function is that it is a positive function h(t)≥0, and has no upper 

bound. The importance of the risk function comes from the fact that it expresses the change 

during the patient's life or represents the risk for each item. The aggregate risk function is 

defined as the cumulative sum of the risk rates faced by a given individual from the origin of 

time until the observed survival time t, symbolized by the symbol H(t).   It is expressed 

mathematically as in formulas (5) and (6): 



Webology (ISSN: 1735-188X) 

Volume 19, Number 5, 2022 

 

338                                                               http://www.webology.org 
 

H(t) = ∫ h(u)du

t

0

                              (5) 

H(t) = ∫
f(u)

S(u)

t

0

 du = − ∫
1

S(u)
 {

d

du
 S(u)}

t

0

 du     =  − ln S(t)          (6) 

 

Nonparametric Method 

Nonparametric estimation methods depend on the direct inference of the survival function by 

arranging and experimenting with data on survival time. And resort to it when finding the 

appropriate theoretical distribution of the data is impossible. We will discuss one of these 

methods, which is the Kaplan-Meier method. 

 

Kaplan-Meier method 

This method is one of the most widely used nonparametric estimation methods. This is due to 

its relevance to various life-length data, whether in the medical fields (to measure part of the 

patients’ lives for a certain period) or in the industrial fields (the maintenance officer measures 

the time until the failure of the product or machine). The estimation of the survival function 

according to this method is defined by the formula (7): 

ŜK.M(ti) = ∏ [
ni−di

ni
]ti≤t             (7) 

Since: 

ŜK.M(ti): Estimation of the survival function by the Kaplan–Meier method 

ni: The setting of times to stay in time (ti). 

di: The number of people who died at the moment in time(ti) 

 

Semi- Parametric Method 

Most models that contain a set of unknown parameters (β) representing the parametric part, 

with an anonymous link function representing the non-parametric part, are called semi-

parametric models [g(.)]. This model is often used in models where parametric assumptions are 

ill-defined and inconsistent. Or that the nonparametric model is not fully functional. One of the 

semi-parametric methods used in this research to find the risk function is the Cox Regression 

method. 

 

Cox Regression Method 

The description of the relationship between the Hazard Rate and a set of explanatory variables 

can be done with a regression model of the formula (8): 
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𝑙𝑛[ℎ(𝑡)] = 𝑙𝑛[ℎ0(𝑡)] + ∑ 𝛽𝑖𝑥𝑖

𝑝

𝑖=1

               (8) 

Or in the formula (9): 

𝑙𝑛[−𝑙𝑛𝑆(𝑡; 𝑥)] = 𝑥′𝛽 +  𝑙𝑛[ℎ0(𝑡)]               (9) 

It is a (Cox Regression) model, where the parameter vector (β) is estimated (through the partial 

potential function). The introductory risk rate [h0(t)] is represented when the explanatory 

variables [xi] are equal to zero, or the model is described in terms of (relative risk) in the 

formula (10): 

ln (
h(t)

h0(t)
) = ∑ βixi

p

i=1

                     (10) 

It is a form that does not have a hard limit parameter. Where this parameter becomes part of 

(h(t)), as for the cumulative risk function, and when it is under the assumption of the regression 

of the relative position and in the presence of explanatory variables, it is in the formula (11): 

H(t, x) = H0(t)exp(∑ βixi
p
i=1 )          (11) 

It is possible to use the ranks of the failure time (t) to estimate the parameters of the model in 

the formula (11), and it is noticeable that the relationship H0(t) describes the survival time (t) 

and its absence with in (exp(∑ βixi
p
i=1 )). In the same way, the cumulative survival function is 

described by the formula (12): 

S(t, x) = S0exp(∑ βixi
p
i=1 )            (12) 

The parameters (β) indicate the amount of change in the logarithm of the risk rate when (xi) it 

increases by one unit, noting that the positive value of the parameters (β) indicates that 

increasing the value of the explanatory change by one unit leads to an increase in the risk 

function and thus the situation worsens. As for the negative value of the parameter, it indicates 

that by increasing the explanatory variable by one unit, the risk decreases , and the case under 

study improves. 

Cox Regression Parameters Estimation 

The method of estimating the parameters of the (Cox) model in 1975, the scientist proposed the 

partial possibility method to estimate the parameters of the (Cox Regression) model, as this 

method gives an expectation of the values of the dependent variable through the independent 

variables in the absence of knowledge of the nature of the primary risk function (h0(t)) The 

partial function is in form (13): 

lp(β) = ∏
exiβi

∑ e
xjβj

j=R(ti)

m
i=1      (13) 

Where (m) represents the number of failures, and (xi) represents the variable values of the item 

whose survival time (ti), and the risk group (R(ti)), that is, all the items at risk of failure are 

R(ti) = {j = tj ≥ ti}, and by taking the natural logarithm of the formula (14) it becomes: 
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log (lp(β)) = ∑ {xiβi − log ∑ exjβj
j=R(ti) }m

i=1       (14) 

After deriving the equation (14) and equating it to zero, we get the model’s parameters. 

Research data 

Data were obtained from the tympanic membranes of diagnosed and diagnosed MERS-CoV 

patients in Al Kindi Teaching Hospital. These patients were monitored for a period of (60) days, 

starting from (15-6-2021) until (14-8-2021), and the sample size was (50) patients.  The data for 

this study are the dates of diagnosis of the disease until the date of death, improvement or loss 

of follow-up of the patient, representing the survival time. 

Survival function estimation 

The nonparametric method 

By (Kaplan-Meier) method, the survival function and cumulative risk were estimated by (SPSS) 

program, and the results are in Table 1, where the survival function started approximately 

(98%), but over time, the number of those who died it has increased, and then the survival 

function has decreased and ended about (15%), and this confirms that the survival function is 

inversely proportional to time, while the cumulative risk function is directly proportional to the 

increase in the period, then the incremental risk rate increases to reach (2), which It indicates 

an increase in the probability of the death of the injured in the period, as the highest risk rate is 

for the patient who remained under observation for a period of (33) days until he died. 

Table 1. Survival and cumulative risk functions Kaplan – Meier. 

H(t) S(t) t i H(t) S(t) t i 

0.45421 0.63495 12 13 0.02151 0.97872 2 1 

0.45421 0.63495 12 14 0.04398 0.95691 3 2 

0.51484 0.5976 14 15 0.09399 0.91029 5 3 

0.58383 0.55776 15 16 0.09399 0.91029 5 4 

0.66387 0.51485 17 17 0.12139 0.88569 6 5 

0.76923 0.46337 19 18 0.18023 0.83508 7 6 

0.88702 0.41188 20 19 0.18023 0.83508 7 7 

1.02055 0.3604 21 20 0.24477 0.78289 8 8 

1.20287 0.30033 28 21 0.24477 0.78289 8 9 

1.89602 0.15017 33 22 0.27986 0.75589 10 10 

1.89602 0.15017 33 23 0.32068 0.72565 11 11 

    0.45421 0.63495 12 12 
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Figure 1. S(t) and H(t) for Kaplan – Meier 

Semi-parametric method 

The Cox Regression model assumes a risk function for patients infected with Coronavirus, 

which is affected by three variables, namely, the patient's age, gender, occupation, and survival 

time. Partial and estimated model parameters as in Table 2. 

Table 2. Wald test 

Variables B SE Wald Df Sig. Exp(B) 

Age 1.248 0.534 5.468 1 0.019 3.483 

Sex -0.487 0.493 0.978 1 0.323 0.614 

Job 0.216 0.297 0.526 1 0.468 1.241 

 

The values of the   (Wald) test show the values of the test parameters of the model. It indicates 

through the values of the (sig.) column that the variable of age is the only significant variable 

in the study variables, because the value of (sig.=0.019) is less than (0.05), and this indicates 

that the age of the patient has a significant effect on the survival time according to the data of 

this research, and since the parameter value (1.248), which is a positive amount, indicates that 

the increase in the explanatory variable the patient’s age, i.e. (transferring from one age group 

to a later age group) leads to an increase in the risk and that the patient’s condition tends to for 

the worse by (e1.248 = 3.483 ), where the following relationship describes the survival model: 

𝐒(𝐭) = S0e1.248ti               (15) 

As for the survival and risk functions of the estimated model, they are shown in Table (3), from 

which the survival function started at about (97%). With time, the number of those who died 

has increased. Then the survival function may range between increasing and decreasing as it 

decreases and ends at approximately (2%) at the survival time (33) days. This confirms that the 

survival function is inversely proportional to time. In contrast, the cumulative risk function is 

directly proportional to time and is affected by the age variable. The probability of the death of 

the injured in the period, as the highest cumulative risk rate is for the patient who remained 

under observation for a period of (33) days until he died at the age of (68). 
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Table 3. Survival and cumulative risk functions Cox Regerssion 

H(t) S(t) Age t i H(t) S(t) Age t i 

0.53546 0.5854 69 12 13 0.02599 0.97434 78 2 1 

0.43158 0.64948 63 12 14 0.07053 0.9319 79 3 2 

0.80053 0.44909 80 14 15 0.15045 0.86032 60 5 3 

1.40847 0.24452 60 15 16 0.11468 0.89165 87 5 4 

1.31088 0.26958 66 17 17 0.19469 0.82309 65 6 5 

0.36441 0.69461 58 19 18 0.22035 0.80224 69 7 6 

1.51686 0.2194 69 20 19 0.27339 0.7608 60 7 7 

1.84666 0.15776 85 21 20 0.39105 0.67634 62 8 8 

0.68987 0.50164 55 28 21 0.11227 0.8938 57 8 9 

0.86709 0.42017 55 33 22 0.1208 0.88621 55 10 10 

3.74707 0.02359 67 33 23 0.30991 0.73352 73 11 11 

     0.87153 0.41831 63 12 12 

 

 

Figure 2. S(t) for Cox Regression 

 

Figure 3. H(t) for Cox Regression 

 

An advantage in estimating the survival function 
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To know whether the estimation of the survival function by the nonparametric method using 

the (Kaplan-Meier) is best? or is the estimation of the survival function by the semi-parametric 

method (Cox Regression) the best? The RMSE statistic was used, as in the table: 

Table 4. The sum of squares of errors. 

Cox Regression Kaplan – Meier Method 

0.2403 0.21977 RMSE 

 

Table 4 shows the value of (RMSE) for estimating the survival function by the nonparametric 

method using  (Kaplan-Meier) is less than (RMSE) for semi-parametric survival function 

estimation (Cox Regression), then the nonparametric method by (Kaplan-Meier) in estimating 

the survival function is the best. 

Conclusions 

When estimating the survival function by the nonparametric method (Kaplan-Meier), it is 

possible to obtain the lowest cumulative risk rate for each survival time, which means the 

patient's probability of survival in the period (t) increases. We conclude from the mean of the 

relative error squares that the difference between the survival models estimated by (non-

parametric, semi-parametric) is small. 
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